HACKEANDO MATEMÁTICA

Professor: Rodrigo Teixeira

FUNÇÕES SOBREJETORAS, INJETORAS E BIJETORAS

QUESTÃO 1 (EFOMM 2019)

Seja a função $f:(t;+\infty) \to |R|$, definida por $f(x)=x^3-3x^2+1$. O menor valor de t, para que a função seja injetiva, é

- (A) -1
- (B) 0
- (C) 1
- (D) 2
- (E) 3

QUESTÃO 2 (ITA 2016)

Sejam X e Y dois conjuntos finitos com $X \subset Y$ e $X \neq Y$. Considere as seguintes afirmações:

I. Existe uma bijeção $f: X \to Y$. II. Existe uma função injetora $g: Y \to X$. III. O número de funções injetoras $f: X \to Y$ é igual ao número de funções sobrejetoras $g: Y \to X$. É (são) verdadeira(s)

- A nenhuma delas.
- (B) apenas I.
- (c) apenas III.
- D apenas I e II.
- (E) todas.

QUESTÃO 3 (EsPCEx 2014)

Sabendo que "c" e "d" são números reais, o maior valor de "d" tal que a função f: IR → IR definida por

$$f(x) = \begin{cases} -x + c, \text{ para } x \ge d \\ x^2 - 4x + 3, \text{ para } x < d \end{cases}$$
 seja injetora é

- A) 0.
- (B) 1.
- (c) 2.
- (D) 3.
- (E) 4.

QUESTÃO 4 (ITA 2012)

Considere funções f, g, f + g: $R \rightarrow R$. Das afirmações:

- I. Se f e g são injetoras, f + g é injetora;
- II. Se $f \in g$ são sobrejetoras, f + g é sobrejetora;
- III. Se f e g não são injetoras, f + g não é injetora;
- IV. Se f e g não são sobrejetoras, f + g não é sobrejetora,
- é (são) verdadeira(s):

1

 A nenhuma. B apenas I e II. C apenas I e III. D apenas III e IV. E todas. 									
					GABAR	ITO:			
1: 0	2: A	3: C	4: A						
									2